Local Deep-Feature Alignment for Unsupervised Dimension Reduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised feature dimension reduction for classification of MR spectra.

We present an unsupervised feature dimension reduction method for the classification of magnetic resonance spectra. The technique preserves spectral information, important for disease profiling. We propose to use this technique as a preprocessing step for computationally demanding wrapper-based feature subset selection. We show that the classification accuracy on an independent test set can be ...

متن کامل

Local Neighborhood Embedding for Unsupervised Nonlinear Dimension Reduction

The construction of similarity relationship among data points plays a critical role in manifold learning. There exist two popular schemes, i.e., pairwise-distance based similarity and reconstruction coefficient based similarity. Existing works only have involved one scheme of them. These two schemes have different drawbacks. For pairwisedistance based similarity graph algorithms, they are sensi...

متن کامل

Unsupervised Kernel Dimension Reduction

We apply the framework of kernel dimension reduction, originally designed for supervised problems, to unsupervised dimensionality reduction. In this framework, kernel-based measures of independence are used to derive low-dimensional representations that maximally capture information in covariates in order to predict responses. We extend this idea and develop similarly motivated measures for uns...

متن کامل

Local Feature Based Unsupervised Alignment of Object Class Images

Alignment of objects is a predominant problem in visual object categorisation (VOC). State-of-the-art part-based VOC methods try to automatically learn object parts and their spatial variation, which is difficult for objects in arbitrary poses. A straightforward solution is to annotate images with a set of “object landmarks”, but due to laborious work required, less supervised methods are prefe...

متن کامل

Feature Reduction for Unsupervised Learning

In this project, four unsupervised feature reduction algorithms for clustering problem were investigated and experimented upon two sets of data – handwritten digits data set and the functional magnetic resonance imaging (fMRI) resting state data set. Ratio of sum of squares (RSS), leverage score (LEV), and Laplacian score (LAP) were used to rank the influences of the features in the clustering....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2018

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2018.2804218